# EASY TOOL FOR EVALUATION OF BENEFITS OF COMBINING PV + HP/CC



Björn Nienborg

Fraunhofer Institute for Solar Energy Systems ISE

Task 53, 2<sup>nd</sup> Expert Workshop Västeras, 7<sup>th</sup>/8<sup>th</sup> October 2014

www.ise.fraunhofer.de

### **AGENDA**

- What does the tool do?
- How does the tool work?
- Results

### **PV**<sub>Therm</sub>-PreCheck – based on MS Excel



### **PV**<sub>Therm</sub>-PreCheck – input profiles

# Hourly weather and load profiles

- Heating
- Cooling
- DHW
- electricity





#### PV<sub>Therm</sub>-PreCheck – input parameters

# Hourly weather and load profiles

- Heating
- Cooling
- DHW
- electricity

## Components' properties & sizes

- Thermal storages
- Battery storage
- Efficiency curves of PV/HP/CC



#### PV<sub>Therm</sub>-PreCheck – economics

## Hourly weather and load profiles

- Heating
- Cooling
- DHW
- electricity

# Components' properties & sizes

- Thermal storages
- Battery storage
- Efficiency curves of HP/CC





#### **PV**<sub>Therm</sub>-PreCheck – outputs

#### Hourly weather and load profiles

- Heating
- Cooling
- DHW
- electricity

#### Components' properties & sizes

- Thermal storages
- Battery storage
- Efficiency curves of PV/HP/CC





Energetic evaluation

**Economic** evaluation

















#### **Examplary results**

- Single family house (140m²) in Potsdam, Germany
- Measured electric loads (3700kWh)
- Simulated thermal loads (2400kWh DHW, 7500kWh heating, 1000kWh cooling)
- Reversible, 0-100% controllable HP, additional DHW-HP
- 200l DHW storage
- Direct self consumption / heating / cooling

#### **Results – SFH Germany: Solar fraction**

- Single family house (140m²) in Potsdam, Germany
- Measured electric loads, simulated thermal loads
- Direct self consumption / heating / cooling
- 200l DHW storage



#### **Results – SFH Germany**

- d\_NPV = NPV actual configuration NPV reference configuration
- Feed-in tariff 12ct/kWh
- Electricity cost 25ct/kWh



Only one storage size is varied at a time





d\_NPV = NPV actual configuration – NPV reference configuration



Calculated with 12 ct/kWh FIT

- d\_NPV = NPV actual configuration NPV reference configuration
- Specific costs of installed battery storage 2...3k€



Calculated with 12 ct/kWh FIT

#### **Conclusions**

- Simple tool allows quick evaluation of different scenarios (incl. parameter variation)
- Optimum configuration dependent on various factors (loads, climate, costs, ...)
- In small applications energy storage is rarely profitable
  - Heating due to bad congruence of solar resource and demand
  - Cooling due to small dT in sensible storage
  - Battery due to high investment costs

#### Next steps:

- Refinement of models,
- Validation against transient simulation,
- ...

#### Thank you for your attention!













Fraunhofer Institute for Solar Energy Systems ISE

Björn Nienborg

www.ise.fraunhofer.de

bjoern.nienborg@ise.fraunhofer.de