ClimateWell 🥠

Making a difference to your environment

Suncool conference

LIFE11 ENV/SE/000838 SUNCOOL

October 9th, 2014

09.30-09.45	Welcome and introduction	Daniel Mugnier Per Olofsson		TECSOL ClimateWell	
09.45-10.15	Presentation of the first results from subtask A: Survey of existing new generation systems	Tim Se	lke	AIT	
10.15-10.45	Presentation of the research and development work, leading up to the Suncool collectors	Per Olofsson/ Göran Bolin		ClimateWell	
10.45-11.00	Presentation of the system solution and control strategy	Olof	Climat	eWell	
11.00- 11.45	Visit to the demonstration installation				
11.45-12:00	Presentation of measurement data from the installation		Corey	ClimateWell	
12.00-12:15	Presentation of lessons learned from the syste engineering and installation	im	Olof/Corey	ClimateWell	
12.15-13:30	Work-shop with Q&A and discussion around 2-3 research topics.	v	Olof/Corey	ClimateWell	

- 1. Presentation of the research and development work, leading up to the Suncool collectors [Per/Göran]
- 2. Presentation of the system solution and control strategy [Olof]
- 3. Presentation of measurement data from the installation [Corey]
- 4. Presentation of lessons learned from the system engineering and installation [Olof/Corey]
- 5. Work-shop with Q&A and discussion around 2-3 research topics [Olof/Corey]

- The solar heating and cooling installation in the world with the highest electrical COP:
 - Measured average of over 10 and maximum of 12
 - Potential to reach 15
- How? Integration of components and minimization of moving parts

Background

- ClimateWell started developing a technology for solar cooling (and heating) in 2002 based on an absorption discovery
- The main difference towards conventional absorption was that it included mass transportation of the salt solution
 - In the first versions using pumps
 - Since 2006 using a proprietary capillary technology which eliminated the need for pumps
- The first product was a solar chiller called the SolarChiller. It was powered by conventional solar thermal collectors. More than 200 units of the SolarChiller were delivered.
- A lot was learned and the main conclusions were:
 - It works but it is too expensive
 - The installation is too complex
 - We need to get colder AC temperatures
 - We need to get a much higher electrical COP. Reduce the need for pumps and fans.

From:

Göran Bolin, CTO and founder of ClimateWell

The solution: Integration and simplification

- Integrate the sorption component directly into the solar collector
- Less complexity
- Less circuits
- Less losses
- Less control
- Lower cost
- Higher electrical COP
- And, do the charging during the day and the delivery of cooling during the night = reduced fan speeds and improves temperatures

ClimateWell

Tests...

- First we tested in our own test rigs, on an individual tube level
- Then we tested one collector at Fraunhofer ISE: during 2012
- During summer 2013, we installed 4 collectors and placed them on a roof in Stockholm
- Now we have made the first full scale installation of 180 m² of collectors here in Karlstad together with Löfbergs

- 1. Presentation of the research and development work, leading up to the Suncool collectors [Per/Göran]
- 2. Presentation of the system solution and control strategy [Olof]
- 3. Presentation of measurement data from the installation [Corey]
- 4. Presentation of lessons learned from the system engineering and installation [Olof/Corey]
- 5. Work-shop with Q&A and discussion around 2-3 research topics [Olof/Corey]

- 130 collectors in 12 banks = 180m² aperture area
- Installed capacity: 40 kW (cooling)
- Orientation: South-west
- Heat rejection: Dry cooler
- Cooling system: Air handler pre-cooling 7/12°C, cooling baffles 13/18°C. Water/water chillers
- Heating system: District heating (heat recovery from production compressors)

Solution, conceptual schematics

• Three production modes

Desorption Mode	Absorption Mode	Winter Mode
Day-time Het rejection to ambient	Heat delivery to hot storage Heat rejection to ambient Cooling production	Day-time Heat delivery to hot storage

• Two delivery modes

Heating delivery	Cooling delivery
Whenever heat available	Whenever cooling available

Control system I/O

Input	Description	Output	Description
T1 (GT51)	Reactor return [°C]	Pre	Reactor primary pump
T2 (GT151)	Reactor flow [°C]	Pce	C/E primary pump
T3 (GT52)	C/E return [°C]	Phs-re	Reactor heat rejection
			pump
T4 (GT152)	C/E flow [°C]	Phs-ce	C/E heat rejection
			pump
T5 (GT39)	Lower hot store	Pheat	Primary heating pump
	temperature [°C]		
T6 (GT40)	Upper hot store	Pheat2	Secondary heating
	temperature [°C]		pump
T7 (GT42)	Upper cold store	Pac	Primary cooling pump
	temperature [°C]		
T9 (GT38)	Return dry cooler	Pac2	Secondary cooling
	temperature [°C]		pump
Tamb (GT114)	Ambient temperature	Fan1	Dry cooler fan 1&2
	[°C]		
Tabs (GT101-GT112)	Collector absorber	Fan2	Dry cooler fan 3&4
	temperature		
Solar	Global irradiation	Fan3	Dry cooler fan 5&6

Control system: Desorption

- 1. Presentation of the research and development work, leading up to the Suncool collectors [Per/Göran]
- 2. Presentation of the system solution and control strategy [Olof]
- 3. Presentation of measurement data from the installation [Corey]
- 4. Presentation of lessons learned from the system engineering and installation [Olof/Corey]
- 5. Work-shop with Q&A and discussion around 2-3 research topics [Olof/Corey]

Nomenclature - Parameters

- Cooling Power
- **Cooling Energy** •
- $$\begin{split} \dot{Q}_{cool} &= c_p \dot{m} (T_1 T_2) \\ E_{cool} &= \int_{*}^{t} \dot{Q}_{cool} \end{split}$$

Re-Cooling Power & Energy $\dot{Q}_{hs-re} = c_p \dot{m} (T_5 - T_6)$ $\dot{Q}_{hs-ce} = c_p \dot{m} (T_5 - T_6)$

 $\dot{Q}_{DHW} = c_p \dot{m} (T_3 - T_4)$

- **Energy for Domestic Hot Water Preparation**
- Solar Insolation

Nomenclature - Indices

Continuous monitoring

Continuous monitoring

Performance Parameters	Max	Min	Ave
Solar Cooling COP (COP _{solar})	0.21	0.02	0.17
Cooling Power Index[kW m ⁻²]	0.25	0.14	0.19
Cooling Energy Index[kWh m ⁻² day ⁻¹]	1.52	0.06	1.16
Daily Solar Insolation (H) [kWh m ⁻² day ⁻¹]	7.9	2.7	6.7
Heating Energy for DHW [kWh m ⁻² day ⁻¹)]	0.39	0.10	0.21
Total Efficiency (η _{total})		0.16	0.63
Electrical COP (COP _{el})	12.6	1.7	10.6

Installation	COP _{cool}	COP _{solar}	COP _{el}
Rottweil 680 kW	0.56	0.21	5.80
Festo 1050 kW	0.43	0.17	2.95
Butzbach 20 kW	0.53	0.13	4.82
Large-scale installation 40kW	-	0.17	10.60
Large-scale installation 40kW (including cold store)	-	0.14	8.40

Source: Solarthermie 2000plus Programme (2013)

Winter's Coming!!

Solar heating measurements to come

- 1. Presentation of the research and development work, leading up to the Suncool collectors [Per/Göran]
- 2. Presentation of the system solution and control strategy [Olof]
- 3. Presentation of measurement data from the installation [Corey]
- 4. Presentation of lessons learned from the system engineering and installation [Olof/Corey]
- 5. Work-shop with Q&A and discussion around 2-3 research topics [Olof/Corey]

- Hydraulic communication between reactor and C/E
 - Pressure less drain back circuit
 - Over pressure during day = leakage of air through plumbing
 - Under pressure during night = air enter system, also C/E circuit
 - Air in C/E circuit leads to stagnating collectors and leakage from jacket
- Solution
 - Separation of reactor and C/E circuits by means of heat exchanger

- Buffer storage/Cooling production night time
 - Delivering cooling night time saves compressor cooling night time (high COP)
 - Storing to day time saves compressor cooling day time (low COP), but gives additional losses and lower efficiency of the system.
- Solution
 - Look at the complete system including conventional cooling and see how primary energy can be reduced.

- Heat rejection
 - Heat rejection with dry cooler means temperatures >35°C during day
 - Continuous cycle (SolarChiller) this gave problems (low cooling power)
 - Collector losses relative to ambient temperature

- Consequence
 - Desorption with same efficiency regardless of ambient temperature
 - System equally efficient in Saudi Arabia as in Germany (less irradiation)

- Optimize flow rates with respect to electrical/thermal efficiency
- Investigate if variable flow control can be used
- Improve accuracy of the measuring equipment with better calibration
- Incorporate the SunCool simulation model with dynamic simulation models of entire cooling system (including chiller, building loads etc.)

- 1. Presentation of the research and development work, leading up to the Suncool collectors [Per/Göran]
- 2. Presentation of the system solution and control strategy [Olof]
- 3. Presentation of measurement data from the installation [Corey]
- 4. Presentation of lessons learned from the system engineering and installation [Olof/Corey]
- 5. Work-shop with Q&A and discussion around 2-3 research topics [Olof/Corey]

- Will solar thermal cooling be able to compete with PV-solar cooling?
 - What about grid stability?
 - What about systems for both heating and cooling?
- How can complete systems be evaluated based on primary energy consumption?
 - Reference systems?
 - What to compare with?
- How can solar thermal cooling systems be further simplified?
 - Stand alone systems
 - Air based systems