

IEA SHC TASK 53

Workshop Subtask A

Tim Selke

Workshop on

The New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems) / IEA SHC Task 53

Leonardo da Vinci Hotel Rome Airport Hotel, Wednesday, September 23, 2015, 14.00 – 17.30 hrs

Subtask A What is it about?

- What is the state-of-the-art market available products and upcoming R&D?
- What system configuration do exist und fit for what application?
- What are the benefits of NG Systems in comparison to conventional solution?

Subtask A What is the outcome in 2017

Expected results:

- State-of-the-art of commercially available products systems
- Technical report on newest R&D activities
- Technical report of best practice of energy storage integration
- Classification of NG SHC systems by scare view approach
- Techno-economic report on solar thermally and PV driven systems including Lifecycle Analysis

Subtask A

- Reference Leader AIT
 - 3 different building types
 - 3 climates
 - 3 different distribution systems
 - Sensible latent load

Reference systems

- Split unit and gas boiler
- Reversible air-coupled heat pump
- Reversible water-coupled heat pump

Figure 2-3 Diagram of the selected conventional reference systems including energy flows

IEA SHC TASK 53

Subtask A What systems do we have?

NG systems market available

PV (Cooling/ Heating)

- COSSECO (CH)
- FREECOLD new PV split unit (F)
- Chinese System PV MIDEA

Solar thermal (Cooling/ Heating)

YAZAKI (JP)

R&D Systems close to Market

PV (Cooling/ Heating)

- ATISYS / PV cooling (F)
- Helioherm

Solar thermal (Cooling/ Heating)

- FREESCOO (I)
- ClimateWELL (S)
- SolabCOOL (NL)

Subtask A

New Generation Systems Leader Tecsol

Subtask A

- Storages Leader HEFR Switzerland
- Thermal energy storage methods
 - Sensible heat
 - Phase change storage
 - Chemical reaction
- Electrical energy storage methods
 - Super capacitor
 - Superconducting Magnetic Energy
 - Flywheel
 - Batteries
 - Batteries Redoxflow
 - •

Figure 15: Means of stationary electricity storage according to their time of discharge and typical power

Source: http://www.climatetechwiki.org/technology/jiqweb-es-fw

Subtask A

System Integration Leader AIT

Schematic Draft 2: Example 1

Schematic Draft 2: Example 2

Task 53

IEA SHC TASK 53 - Workshop in Rom

Subtask A

- LCA and Techno-ECO Analysis Leader Uni Palermo
 - Already 2 Italian NG cooling systems R&D analyzed
 - Literature review on existing LCA
 - At least 2 LCA on NG Cooling systems

Air handling unit desiccant cooling (AHU-DEC): first results

Primary energy consumption (MJ) for the manufacturing step

Subtask A

Work in progress

AIT Austrian Institute of Technology

your ingenious partner

Tim Selke tim.selke@ait.ac.at