

Technical and Economic Assessment

of solar heating and cooling systems T53E4 evaluation tool

Daniel NEYER^{1,2}, Alexander THÜR², Rebekka Köll³

$$SPF_{th} = \frac{\sum Q_{out}}{\sum Q_{in}}$$

$$PER = \frac{\sum Q_{out}}{\sum \left(\frac{Q_{el,in}}{\varepsilon_{el}} + \frac{Q_{in}}{\varepsilon_{in}}\right)}$$

$$f_{sav.PER} = 1 - \frac{PER_{ref}}{PER_{i}}$$

$$\Delta SPF_{sHc} = \frac{Q_{WD system} + Q_{HD system} + Q_{hloss} - Q_{HB system} * (1 - \%_{HB, c}) + Q_{HP system}}{\frac{Q_{HB system} * \%_{HB, c} * \varepsilon_{el}}{\varepsilon_{EC} * \eta_{b}} + E_{aux,SHC}}$$

$$SPF_{equ} = \frac{PER_{NRE}}{\varepsilon_{el}}$$

$$PER_{NRE.ref} = \frac{\sum Q_{out}}{\sum \left(\frac{Q_{outheat} + Q_{loss} - q_{HB system}}{\varepsilon_{in} * \eta_{HB,ref}} + \frac{Q_{outcold}}{SPF_{cref} * \varepsilon_{el}} + \frac{Q_{el,ref}}{\varepsilon_{el}}\right)}{t}$$

$$cAP_{solar} = \frac{\left(\frac{Q_{CD system} + Q_{closs} - Q_{CB system}}{EER_{ref}(f(kW))} - \frac{Q_{HB system} * \%_{HB,C} * \varepsilon_{el}}{t} - \Delta E_{aux,c}\right)}{t}$$

Introduction

- Solar cooling and heating can be complex
 - Solar Thermal or Photovoltaic driven
 - System design & configurations (backups, storages,...)
 - Demands (domestic hot water, space cooling, ...)
 - ...

Component ↔ System ↔ Building

? Which key performance indicators to use ?
? Benchmarks for and against SHC systems ?
? Combine gas and electricity in one key figure ?
? Steady state vs. dynamic behavior ?

→ Assessment in a **common comparable format**

- energetic, ecological, economic, evaluation
 → T53E4 Assessment Tool
- Assessment based on (monthly) energy balances
- Measured or simulated (sub) system
- Data base for technical and economic assessment
- T53 standard & specific results

System & Components

Boundary - Cooling

Oct 2018

Boundary - Solar Cooling

universität innsbruck

Arbeitsbereich für

danielneyer

brainworks

Systems & Components

Technical and economic data available for

		components	
	Solar Thermal	Flat Plate Collector	i
	Collectors (SC)	Evacuated Tube Collector	
	Photovoltaic (PV)	Photovoltaic Panels	
		BOS (balance of system)-components	
	Heating (H1, H2)	Natural Gas Boiler	
		Pellets Boiler	
		Heat Pump (not reversible/reversible)	
		Absorption Heat Pump (not reversible/reversible)	
		Combined Heat&Power Plant	
		District Heating (as heat source)	
	Cooling (C1, C2)	Air-Cooled Vapour Compression Chiller	
		Water-Cooled Vapour Compression Chiller	
		Absorption Chiller (Single Effect & Double Effect)	
		Adsorption Chiller	
		District Cooling (as cold source)	
	Storage	Hot Storage	
Oct 2018	(HS, CS, BS)	Cold Storage	Slide
		Dellem Channe	

Technical Key Figures

- Non-renewable primary energy ratio (PER_{NRE}) Energy input (Q_{in}) converted in primary energy electricity: $\mathbf{\epsilon}_{el} = 0.4 \text{ kWh}_{Use}/\text{kWh}_{PE.NRE}$ natural gas: $\mathbf{\epsilon}_{in} = 0.9 \text{ kWh}_{Use}/\text{kWh}_{PE.NRE}$ $PER_{NRE} = \frac{\sum Q_{out}}{\sum \left(\frac{Q_{el,in}}{\sum 1} + \frac{Q_{in}}{\sum 1}\right)}$
- Standardized Task 53 reference system
 Natural gas boiler, air-cooled vapor compression chiller

$$\mathsf{PER}_{\mathsf{NRE.ref}} = \frac{\sum \mathsf{Q}_{\mathsf{out}}}{\sum \left(\frac{\mathsf{Q}_{\mathsf{out.heat}} + \mathsf{Q}_{\mathsf{loss.ref}}}{\varepsilon_{\mathsf{in}} * \eta_{\mathsf{HB.ref}}} + \frac{\mathsf{Q}_{\mathsf{out.cold}}}{\mathsf{SPF}_{\mathsf{C.ref}} * \varepsilon_{\mathsf{el}}} + \frac{\mathsf{Q}_{\mathsf{el,ref}}}{\varepsilon_{\mathsf{el}}}\right)}$$

Non-renewable primary energy savings (f_{sav.PER-NRE})

$$f_{sav.PER-NRE} = 1 - \frac{PER_{NRE.ref}}{PER_{NRE.SHC}}$$

SPFequ = SPF in electrical equivalent units,

PER converted into a comparable magnitude for vapour compression chiller / heat pump

$$SPF_{equ} = \frac{PER_{NRE}}{\varepsilon_{el}} = \frac{\sum Q_{out}}{\sum \left(Q_{el,in} + \frac{Q_{in}}{\varepsilon_{in}} * \varepsilon_{el}\right)}$$

to compare the overall heating / cooling system with a vapour compression chiller / heat pump

Primary Energy

 Annual non-renewable primary energy conversion factors

	T53 Standard	Unit
Primary energy factor for electricity $\epsilon_{\rm el}$	0.40	kWh _{el} /kWh _{pr}
CO ₂ factor for electricity	0.55	kg/kWh _{el}
Efficiency of the natural gas boiler η_{HB}	0.9	-
Primary energy factor for natural gas ϵ_{EC}	0.9	kWh _{el} /kWh _{pr}
CO ₂ factor for natural gas	0.26	kg/kWh _{el}
Efficiency of the pellets boiler η_{HB}	0.86	-
Primary energy factor for pellets ϵ_{EC}	10	kWh _{el} /kWh _{pr}
CO ₂ factor for pellets	0.05	kg/kWh _{el}

 \rightarrow Specific values country wise

Electricity

- Monthly T53 standard values for non-renewable primary energy and CO2 emissions
- Example for Austria, based 2015

Economic Key figures

- Different views / interests
 - Customer, Investor, Facility management...
- Different methods & key figures (dynamic calculation):
 - Amortization method
 - Discounted cash flow method
 - Present value method
 - Annuity method

- \rightarrow pay back time
- \rightarrow internal rate of return (IRR),
 - \rightarrow net present value (NPV),
 - \rightarrow annualized costs
 - \rightarrow Levelized cost of energy

→ Comparing systems with economic life time of components
 → Many misleading KPIs...
 → Many decisions in early stage...

Economic Key figures

- Annuity method & input values based on EN-standards
- Standardized (data base) to calculate annualized costs
 - Investment, replacement & residual value
 - Maintenance & service,
 - Operational costs (energy, water)
 - Solar Heating and Cooling and Reference
 - ► → Levelized cost of energy

→CostRatio (CR)

 $CostRatio(CR) = \frac{annualized \ costs \ SHC}{annualized \ cost \ REF}$

Investment Costs

- For all main components,
 - size dependent incl. economy of scale
 - e.g. vapour compression / absorption chiller

Economics	
Period under consideration	25 a
Credit period	10 a
Inflation rate	3 %

Energy costs					
Electricity (energy)	10 ct/kWh				
Electricity (power)	80 €/kW.a				
Feed-in tariff without subsidies	3 ct/kWh				
Natural gas	5 ct/kWh				
Water	2.5 €/m³				

Reference System - VCC

Arbeitsbereich für Energieeffizientes Bauen

- Water cooled VCC
- Air cooled VCC

- Depending on capacity
 - Configuration (1/2 hydraulic circuits)
 - Technologies (comp.: scroll, screw, turbo; heat exchanger;...)

Capacity [kW]	Circuit	Water cooled	Air cooled
20	1	Scroll	Scroll
50	1	Scroll	Scroll
100	1	Scroll	Scroll
250	2	Scroll/Turbo	Scroll
500	2	Turbo	Screw
1000	2	Turbo	Screw

 European Seasonal Energy Efficiency Ratio (ESEER) of standard vapor compression chiller according to EUROVENT

Summary

- T53E4 Assessment Tool
 - Simplified analysis of system / subsystem
 - T53 Standard & specific calculation
 - Useful for benchmarking against reference and other RE
 - Focus on
 - non-renewable primary energy (fsav.NRE)
 - Cost Ratio

→ need of working group for harmonizing of calculation methods and technical and economic key performance indicators

CORE[®] THE CYBERNETICS OF RENEWABLE ENERGY AND EFFICIENCY. oberradin 50 6700 bludenz austria +43 664 28 26 529 daniel@neyer-brainworks.at www.neyer-brainworks.at

Thank you for your attention!

Arbeitsbereich für Energieeffizientes Bauen

T53 Best practice examples Introduction

Overview Examples

- Assessment of 28 SHC plants with T53E4 Tool
 - 17 examples (28 configurations)
 - System & Subsystem Analysis
 - Trend analysis
 - Sensitivity analysis

Overview Examples

Results obtained

- Assessment of 28 SHC plants with T53E4 Tool
 - o Technical analysis
 - Energy balance check
 - Comparison to T53 Standard
 - System & Subsystem Analysis
 - PER_{NRE} , $PER_{NRE.ref}$, $f_{sav.NRE}$, SPF_{equ}
 - Economic analysis
 - Investment, Replacement & Residual
 - Maintenance, Energy (electricity, natural gas,...)
 - Comparison to T53 Standard
 - Spec. Invest, $LCOE_{SHC}$, $LCOE_{REF}$, CR
- Trend analysis
- Sensitivity analysis