IEA SHC Task 53 – Subtask C

Technical and economic assessment TOOL

Daniel Neyer, Alexander Thür
University of Innsbruck
Unit Energy Efficient Buildings
Innsbruck
AUSTRIA

Bettina Nocke,
AEE INTEC
Feldgasse 19, 8200 Gleisdorf
Solar Heating and Cooling can be complex
Rating systems for Solar Heating and Cooling

- Fair key figure … comparable with SEER?
- How to combine gas and electricity in one key figure?
- Benchmarks for and against
 - Solar cooling
 - Conventional system

→ Technical and economic evaluation Excel TOOL
Introduction

- Several Key Performance Indicators in TOOL
 - Efficiency on building & component level
 - Electricity / Primary Energy / CO2 Emissions

- Excel Tool for evaluation of systems
 - Technical assessment
 - Indicative economic analysis
Technical Assessment – Selected Key Figures

- **Equivalent Seasonal Performance Factor (SPFequ)**

 Primary energy flows expressed in electrical equivalent units used to compare with any (non-) renewable system.

 \[
 SPF_{equ} = \frac{\sum Q_{out}}{\sum Q_{el,in} + \sum \frac{\varepsilon_{el} \cdot Q_{th,in}}{\varepsilon_{in}}}
 \]

- **Fractional savings (fsav_PRE-NRE)**

 For non-renewable Primary Energy Compared with REF System

 T53 standard: natural Gas / air cooled VCC

 \[
 f_{sav.PER} = 1 - \frac{PER_{ref}}{PER_{SHC}}
 \]
Indicative Economic Analysis

- Method & input values based on VDI- and EN-standards
- Annualized costs for
 - Investment
 - Replacement & residual value
 - Maintenance & service
 - Operational costs (energy, water)

→ Levelized costs of energy
 (Cooling + Space Heating + Domestic Hot Water)

\[
\text{cost ratio} = \frac{\text{levelized costs } SHC}{\text{levelized cost } \text{REF}}
\]
Results from T48 vs. T53!
Results from T48 vs. T53!
More DETAILS

- @ Workshop...
Assessment Tool

Main Target:
→ system assessment & evaluation
→ Comparison of SHC & Reference Systems
→ Overall system & subsystem
→ Labelling / Benchmarking

- Standard & specific values
- Adaption from T48 to 53
Difference T48 – T53

- SOL = ST or PV or ST+PV
- More components and complex systems
 - Bivalent,
 - PV, CHP, revHP
 - ...
- More Reference systems are available
 - Efficiency (based on monthly average load)
 - District heating
 - Electrical
 - Oil
 - ...
Difference T48 – T53

- Additional Useful Energy
 - district heating (DH)
 - District cooling (DC)
 - Domestic electricity (DE)
- 10 sub systems evaluated
 - Overall system (DHW+SH+C+DH+DC+DE)
 - DHW / DHWsol
 - SH / SHsol
 - C / Csol
 - DH / DHsol
 - DC / DCsol
Difference T48 – T53

- Analysis / Assessment on monthly energy balance
 - Efficiency - η,
 - Primary energy factor - ε
 - ...on a monthly base!

- Economics for all components
 - Investment costs
 - Maintenance
 - Residual / replacement
 - Energy / water
 - Feed in Tariff for: Electricity (PV, CHP), District Heating/Cooling
Technical assessment – boundary
Systems & components

- **Technical and economic data available for**

<table>
<thead>
<tr>
<th>components</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Thermal Collectors (SC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flat Plate Collector</td>
</tr>
<tr>
<td></td>
<td>• Evacuated Tube Collector</td>
</tr>
<tr>
<td>Photovoltaic (PV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Photovoltaic Panels</td>
</tr>
<tr>
<td></td>
<td>• BOS (balance of system)-components</td>
</tr>
<tr>
<td>Heating (H1, H2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Natural Gas Boiler</td>
</tr>
<tr>
<td></td>
<td>• Pellets Boiler</td>
</tr>
<tr>
<td></td>
<td>• Heat Pump (not reversible/reversible)</td>
</tr>
<tr>
<td></td>
<td>• Absorption Heat Pump (not reversible/reversible)</td>
</tr>
<tr>
<td></td>
<td>• Combined Heat&Power Plant</td>
</tr>
<tr>
<td></td>
<td>• District Heating (as heat source)</td>
</tr>
<tr>
<td>Cooling (C1, C2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Air-Cooled Vapour Compression Chiller</td>
</tr>
<tr>
<td></td>
<td>• Water-Cooled Vapour Compression Chiller</td>
</tr>
<tr>
<td></td>
<td>• Absorption Chiller (Single Effect & Double Effect)</td>
</tr>
<tr>
<td></td>
<td>• Adsorption Chiller</td>
</tr>
<tr>
<td></td>
<td>• District Cooling (as cold source)</td>
</tr>
<tr>
<td>Storage (HS, CS, BS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hot Storage</td>
</tr>
<tr>
<td></td>
<td>• Cold Storage</td>
</tr>
<tr>
<td></td>
<td>• Battery Storage</td>
</tr>
</tbody>
</table>
\[\text{PER}_{\text{NREsys}} = \frac{Q_{CD,\text{System}} + Q_{DC,\text{System}} + Q_{HD,\text{System}} + Q_{WD,\text{System}} + Q_{DH,\text{System}} + Q_{el,DE}}{\varepsilon_{EC1} \cdot Q_{EC,H1} + \varepsilon_{EC2} \cdot Q_{EC,H2} + Q_{el,sys} \left(\frac{\%_{GD,\text{sys}}}{\varepsilon_{el}} + \frac{\%_{PV,el} \cdot TPV}{\varepsilon_{PV,el}} \right)} \]
SUB system – COOLING – \(\text{PER}_{\text{NRE,C}} \)

\[
\text{PER}_{\text{NRE,C}} = \frac{Q_{\text{CD, System}}}{\epsilon_{\text{EC1}}} + \frac{Q_{\text{EC,H1}} * \%_{\text{H1,C}}}{\epsilon_{\text{EC1}}} + \frac{Q_{\text{EC,H2}} * \%_{\text{H2,C}}}{\epsilon_{\text{EC2}}} + Q_{\text{el,C}} * \left(\frac{%_{\text{GD,C}}}{\epsilon_{\text{el}}} + \frac{%_{\text{PV,C}} * TP_{\text{PV}}}{\epsilon_{\text{PV,el}}} \right)
\]
SUB system - SOLAR COOLING – \(\text{PER}_{\text{NRE,Csol}} \)

\[
\text{PER}_{\text{NRE,Csol}} = \frac{Q_{CD,\text{sol}}}{Q_{el,\text{Csol}} \times \left(\frac{\%_{GD,C}}{\epsilon_{el}} + \frac{\%_{PV,C} \times TPV}{\epsilon_{PV,el}} \right)}
\]
KPIs – don’t mix them up…

Comparing thermal and electrical driven System…

- PV + VCC \[\Rightarrow SPF_{el.C} = SPF_{equ.C_{sol}} > SPF_{equ.C}\]
- ST&ACM + VCC \[\Rightarrow SPF_{el.thC} > SPF_{el.C}\]
 \[SPF_{el.thC} = SPF_{equ.C_{sol}} \neq SPF_{equ.C}\]
- ST&ACM + HB \[\Rightarrow SPF_{el.thC} \neq SPF_{equ.C}\]
- ...a lot more in documentation....
Example - Feistritzwerke

- 65m² ST, 19kWc, 300kW DH
- ...

→ excel TOOL
Discussion

- Examples
- Reference
- Costs
- To be included as default: Spain? ??

...???
ToDoS

- Paper – Eurosun!?
 - Abstract 24/04/2016
 - Paper 09/2016

- Tool 05/16
 - Sub system calculations
 - Check different systems
 - Update: how to use ppt…

- Documentation 06-07/16
 - To be updated…
 - Examples could be included?
Thank you for your attention!

Daniel Neyer
University of Innsbruck
Unit Energy Efficient Buildings
Technikerstr. 13
6020 Innsbruck
daniel.neyer@uibk.ac.at
0043 512 507- 63652