

AIT Austrian Institute of Technology

AIT Energy Department

Florian Judex

solar power - prediction vs. generation

Actual Generation

Angezeigter Tag: 17.03.2014 Letzte Aktualisierung: 16.03.2014, 18:00:09 Uhr

Estimated Generation

Angezeigter Zeitraum: 17.03.2014, 00:00 Uhr - 17.03.2014, 23:59 Uhr Letzte Aktualisierung: 17.03.2014, 18:00:10 Uhr

Source: EEX Transparency Platform

Difference: up to 35% or 3000 MW

Source: EEX Transparency Platform

19/03/2014

Possible Solution: shift the demand to the right moment

- create incentives for consumers to use energy when it is available
- therefore match the consumption to the production
- get the demand to respond to the state of the energy grid
 - → demand response (DR)

Types of demand response

- load shedding
 - systems are turned off if demand is to high (cooling stops)
 - a loss of comfort or performance is accepted (the room will get too hot)
 - is often load shifting in disguise (the room will be cooled down again after some time)
- load shifting
 - a process shifted backwards or forward in time to consume at the right moment
 - knowledge of the process is involved (you now the physical parameters of the room in comparison to the cooling systems)
- load forcing
 - a process which is not needed is run to consume overproduction (cool down an unused room)

19.03.2014 5

Simple Demand Response with HVAC systems

- On the basis of the average load profiles, e.g. usage during the night
 - in night-storage heaters
 - in hot water boilers
 - using ripple control
- H0 profile with usual enabling of the heating unit by the ripple control in red

Source: Wikipedia / VDEW

19/03/2014 6

when is a system suitable for load shifting

- to be able to perform load shifting the system should be usually running at the time when the DR is needed
 - if it is not running, it is not using energy any way
- the system should be able to turn off at time the DR is needed
 - else DR is impossible
- the system should be able to stay turned off during the whole duration of the peak
 - which means the building can run without the system for some time

→ these criteria contradict each other

example: cooling at different temperatures

- higher temperature: heating up is quite fast,
- cooling down of the room takes quite long (losses occur also during heating)

lower temperature: heating up takes longer cool down of the room is faster

→ load shifting potential also changes with outside temperature

impact on potential

- lower temperature
 - system can be turned off longer
 - probability that the system is actually running is lower
- higher temperature
 - system can be turned off not as long
 - probability that the system is actually running is lower

running not running

AIT Austrian Institute of Technology

your ingenious partner

Florian Judex florian.judex@ait.ac.at